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On the numerical stability of the second barycentric formula for
trigonometric interpolation in shifted equispaced points
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We consider the numerical stability of the second barycentric formula for evaluation at points in [0,2π]
of trigonometric interpolants in an odd number of equispaced points in that interval. We show that, con-
trary to the prevailing view, which claims that this formula is always stable, it actually possesses a subtle
instability that seems not to have been noticed before. This instability can be corrected by modifying
the formula. We establish the forward stability of the resulting algorithm by using techniques that mimic
those employed previously by Higham (2004) to analyze the second barycentric formula for polynomial
interpolation. We show how these results can be extended to interpolation on other intervals of length-2π

in many cases. Finally, we investigate the formula for an even number of points and show that, in addition
to the instability that affects the odd-length formula, it possesses another instability that is more difficult
to correct.

Keywords: trigonometric interpolation; Lagrange interpolation; barycentric formula; rounding error anal-
ysis; forward error; numerical stability

1. Introduction

Let K > 1 be an odd integer, and let X be a set of K equispaced points xk = (k +α)h, 0 6 k 6 K−1, in
[0,2π], where h = 2π/K is the grid spacing and α ∈ [0,1] is a parameter that determines the grid shift
(i.e., the deviation of x0 from 0). Let f0, . . . , fK−1 be arbitrary real numbers, which we take as elements
of a vector f . This paper begins by considering the formulae
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for evaluating at a point x ∈ [0,2π] the unique trigonometric polynomial t f ,X of degree N = (K−1)/2
that interpolates the value fk at the point xk for each k. We refer to (1.1) and (1.2) as the first and second
barycentric formulae for the trigonometric interpolant, respectively. We are concerned in particular
with the numerical stability of the latter. The authors became interested in this subject as a result
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of discussions with colleagues working on extending the Chebfun software package to operate with
periodic functions (Wright et al., 2015).

The first formula (1.1) can be seen as a rewriting of the classical trigonometric interpolation formula
of Gauss (1866, p. 281) when the interpolation points are equispaced. For α = 0, it appears (along
with its counterpart for an even number of interpolation points) in the work of de la Vallée Poussin
(1908) and Henrici (1979). The latter gives a derivation of it in that case based on a complex change-
of-variable and the relationship between trigonometric interpolation in equispaced points in an interval
and interpolation in equispaced points on the unit circle using Laurent polynomials. The formula for
α 6= 0 then follows from the fact that evaluating at x the interpolant to given data on a grid with α 6= 0
is the same as evaluating at x−αh the interpolant to the same data on the grid with α = 0. The second
formula (1.2) can be derived from (1.1) by observing that the latter implies
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)
and dividing (1.1) through by this identity on both sides.

The second formula seems to have been first introduced by Salzer, who gave versions of it applicable
to trigonometric interpolation in both an odd number (Salzer, 1948) and an even number (Salzer, 1960)
of arbitrary points. The simplified forms that his formulae take when the points are equispaced, includ-
ing (1.2), were first written down by Henrici (1979). Berrut (1984a) later provided special variants of the
second formula for cases in which the interpolation data fk possess odd or even symmetry. The primary
advantage of these formulae is that they offer a way to evaluate the interpolant in just O(nK) operations,
where n is the number of evaluation points, as opposed to the O(K logK + nK) operations that would
be required by methods based on the fast Fourier transform. These formulae are direct analogues of the
more widely known barycentric formulae for polynomial interpolation that have been made popular in
recent years by Berrut & Trefethen (2004).

The numerical stability of these formulae has been discussed in a few places in the literature. Henrici
(1979) notes that (1.1) suffers from instability as K grows due to our inability to evaluate the factor
sin
(
K(x−αh)/2

)
in front of the sum to high relative accuracy for large K. Even for small K, both

Henrici (1979) and Berrut (1984a) indicate that this factor causes instability when evaluating (1.1) for
x close to one of the interpolation points xk. This behavior contrasts markedly with that of the first
barycentric formula for polynomial interpolation, which is backward stable even for non-optimal inter-
polation grids (Higham, 2004).

Thus, it is necessary to use (1.2), which does not contain this factor and so cannot suffer from these
issues.1 Nevertheless, the careful numerical analyst may hesitate to assess (1.2) as stable due to the
singularities at the points xk present in the numerator and denominator. To paraphrase Henrici (1979), if
x is close to xk, cancellation errors that occur when x− xk is calculated in floating-point arithmetic may
be magnified into large absolute errors in 1/sin

(
(x− xk)/2

)
. Typically, however, this does not seem to

cause trouble, and both Henrici (1979) and Berrut (1984b) provide numerical examples illustrating the
apparent stability of (1.2).

Henrici (1979) gives an informal argument explaining these observations. The idea is that while
an error is made, the error is the same in both the numerator and denominator and thus “cancels out”
in the quotient. This reasoning is equally applicable to the polynomial analogue of (1.2), and Higham

1Alternatively, as pointed out by an anonymous referee, one can stabilize (1.1) for evaluations near interpolation points by
adapting a technique of Gautschi (2001) used to stabilize the analogous formula for sinc interpolants, but this has its own disad-
vantages. Moreover, the resulting algorithm still requires correction for the instabilities discussed in this paper.



ON THE STABILITY OF BARYCENTRIC TRIGONOMETRIC INTERPOLATION 3 of 19

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Distance from 0

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
la

ti
v
e
 e

rr
o
r

Relative error vs. distance from 0

FIG. 1: Illustration of instability in (1.2). The solid blue line depicts the relative error in the evalu-
ations for the example described in Section 2. The dashed red line shows the product of the condition
number of the evaluations (computed using the formula given by Lemma 4.1 below) and the unit round-
off u = 2−52. As the distance between the evaluation point and 0 decreases, the relative error rises even
though the evaluation remains well-conditioned, indicating numerical instability.

(2004) has given precise arguments that justify it in that context. Working in the setting of polynomial
interpolation in arbitrary points, he showed that the second polynomial formula is forward stable unless
the Lebesgue constant for the interpolation grid is large. It is natural to expect that something similar
holds in the trigonometric case and, in particular, that (1.2) is forward stable, since the Lebesgue constant
for trigonometric interpolation in equispaced points (which are the optimal points) is modest.

It therefore comes as a surprise, at least to the authors, that this is not quite true. While (1.2) produces
good results in the vast majority of cases, it does, in fact, possess an instability that seems to have been
overlooked in the investigations of Henrici (1979) and Berrut (1984a,b). We illustrate and explain the
origin of this instability in Section 2. Fortunately, it is possible to correct the instability via a rewriting of
(1.2), as we show in Section 3. Combining the original and rewritten formulae, we obtain an algorithm
that is forward stable, and we prove this rigorously in Section 4 by adapting the analysis of Higham
(2004) to our setting. Finally, in Sections 5 and 6 we discuss interpolation on intervals other than [0,2π]
and make a few remarks on what happens when K is even instead of odd.

2. Instability of the second formula

We can demonstrate the instability in (1.2) with a simple numerical example. Take α = 1, K = 3, and
fk = sin(xk) for each k. We evaluate (1.2) with these parameters at several points x whose distances
from 0 range from 1 to 10−15. We perform the evaluation twice: once in double precision and once in
256-bit (approximately 75-digit) precision using the arbitrary precision arithmetic features of the Julia
programming language (Bezanson et al., 2012), which are based on the GNU MPFR library (Fousse
et al., 2007). We take the high precision results as “exact” and use them to measure the relative error in
the results obtained in double precision.

The results are displayed in Figure 1. The error increases steadily as the evaluation point x moves
closer to 0. On the other hand, the product of the condition number κ(x,X , f ) for evaluating t f ,X (x) (see
Section 4.1) and the unit roundoff u = 2−52 is at the level of u for all evaluation points x considered. We
conclude that (1.2) is indeed unstable under these circumstances.

After a little thought, the origin of the instability can be identified. For our choice of α , xK−1 = 2π ,
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Relative error vs. distance from 2π

FIG. 2: Same as Figure 1 but with α = 0 instead of α = 1 and with the evaluation points located near
2π instead of 0. The relative error is at the level of machine precision due to the special circumstances
enjoyed by this case.

so when x is near 0, we evaluate the sine function at a point close to π when computing the terms at
k = K−1 in the numerator and denominator of (1.2). The sine function is poorly conditioned near π , so
the rounding errors incurred when forming (x− xK−1)/2 get magnified into large relative errors in the
computed value of sin

(
(x− xK−1)/2

)
.

For many uses of (1.2), these errors do not cause any problems, since they “cancel out” in the final
quotient as described in Section 1. The mechanism driving the cancellation in this case is the dominance
of the k = K−1 terms in the numerator and denominator of (1.2): for α near 1 and x near 0, these terms
will typically be much larger than the terms for k < K−1, since sin

(
(x− xK−1)/2

)
is nearly 0. Hence,

any relative error in the k = K−1 terms, even a large one, will divide out neatly when taking the quotient.
In our example, however, fK−1, which has a magnitude on the order of 10−16, is much smaller than fk
for k < K−1, all of which have magnitudes on the order of 1. This poor scaling of the function values
relative to each other offsets the dominance of the k = K−1 terms, resulting in imperfect cancellation.

Something interesting occurs if we repeat the experiment but take α = 0 instead of α = 1. In this
case, we anticipate instability when evaluating at points near 2π instead of 0, with the problematic terms
occurring at k = 0 instead of k = K − 1. The results are displayed in Figure 2. While the plot of the
product of the condition number and the unit roundoff is unaltered, surprisingly, the relative error is at
the level of machine precision for all evaluation points. The reason this happens is that when α = 0,
x0 = 0. Thus, (x− x0)/2 is evaluated exactly for all x ∈ [0,2π], since subtraction of 0 and division by
2 incur no errors in standard IEEE floating-point arithmetic. There is therefore no rounding error made
whose effect can be amplified by the ill conditioning of the sine function, so the instability cannot be
excited in this special but very common case. If α is taken to be only near 0 (say, 10−15) instead of
exactly 0, the instability appears as expected.

We speculate that this behavior is one of the reasons the instability described in this section has
evaded notice thus far in the literature, as the α = 0 grid is perhaps the most frequently employed grid
of equispaced points in [0,2π]; indeed, Henrici (1979) works exclusively with this grid. The authors
of the present paper only began to notice the instability when considering the α = 1 grid and when
working with the analogue of the α = 0 grid on [−π,π], for which the first point is −π , a number which
is undistinguished in floating-point arithmetic.
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3. A stable algorithm

The instability just described only arises when the interpolation data are poorly scaled in the sense that
either f0 or fK−1 is much smaller than the other fk when α is near 0 or 1, respectively. If this is not the
case, i.e., if max16k6K−1 | fk/ f0| (for α near 0) or max06k6K−2 | fk/ fK−1| (for α near 1) is not too large,2

then (1.2) will be stable for all evaluation points in [0,2π]. Interpolation data that are as wildly poorly-
scaled as those of the examples shown in the previous section are relatively uncommon in practice.
Even when the data are poorly scaled, most evaluations of the trigonometric interpolant are done in the
interior of the interval, where the sine evaluations are well-conditioned, and (1.2) will be stable in this
case as well. Thus, (1.2) is stable in most cases of practical interest.

Nevertheless, knowing how to fix the instability is valuable so that it can be done when needed. This
can be accomplished by rewriting (1.2) to avoid evaluating the expression sin

(
(x− xk)/2

)
near points

where it is poorly conditioned. There are two situations in which a bad evaluation can occur: when α is
near 0 and the evaluation point x is near 2π and when α is near 1 and x is near 0.

The remedy we propose is to use periodicity to adjust the location of the interpolation point furthest
from x in these cases so that the distance between it and x can never get too close to 2π . Consider
the case where α is near 0. For x near 2π , the interpolation point furthest from x is x0, so we mod-
ify (1.2) by replacing x0 by its periodic image x0 + 2π and changing the signs of the k = 0 terms
in both sums. The resulting formula, which amounts to using (1.2) to compute an interpolant in the
points x1, . . . ,xK−1,x0 + 2π instead of x0,x1, . . . ,xK−1, is exactly equal to (1.2) mathematically but not
in floating-point arithmetic. Similar comments apply to the case where α is near 1 and x is near 0, for
which we replace xK−1 by xK−1−2π and change the signs of the k = K−1 terms. For explicit formulae,
see (3.1) and (3.2), below.

We are not done yet, however, as all we have actually done is rewrite the poorly conditioned terms
in (1.2) in a different way. The modified terms are still poorly conditioned, as a problem’s conditioning
is independent of how it is written down or represented. What has changed is the source of the poor
conditioning. Instead of through the sine function itself, it now enters via the potential for cancellation
error in the computation of the argument to the sine function. The second key idea needed to stabilize
(1.2) is the realization that we can avoid these problems by computing the argument in a particular way,
as we now describe.

First, we must group the terms of the argument appropriately. Consider the case where α is near 0,
so that the argument to the sine function in the modified term is (x− x0−2π)/2. Ignoring the division
by 2, which has no potential for cancellation, if we evaluate the rest in floating-point from left to right
as (x− x0)−fl(2π), where fl(2π) is the nearest floating-point number to 2π (see Section 4.2), then the
second subtraction will involve two nearby quantities whenever x is near 2π and x0 is near 0. Even if
the second subtraction is performed without rounding error, accuracy will be lost if the magnitude of the
rounding error made in the first subtraction is significant compared to the magnitude of the final result.

We can fix this by grouping the terms as
(
x−fl(2π)

)
− x0 instead. While the subtraction x−fl(2π)

still incurs cancellation, it is of a benign sort, as neither x nor fl(2π) has been contaminated by rounding
errors from previous computations (but see the next paragraph). Moreover, since x 6 fl(2π) and x0 > 0,
the second subtraction involves two quantities of opposite sign, and hence no further cancellation can
occur. The final result will therefore be a high relative accuracy approximation to the exact value (i.e.,
computed without rounding error) of x− x0−fl(2π).

2As a rule of thumb, one can expect to lose roughly one digit of accuracy in evaluations near the “bad” endpoint for each order
of magnitude in these quantities. For instance, if α is near 0 and max16k6K−1 | fk/ f0| is on the order of 108, then a loss of about 8
digits in evaluations near 2π would be typical.
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This is almost what we want but not quite: we really want a high relative accuracy approximation to
x− x0−2π . Evaluating

(
x−fl(2π)

)
− x0 in floating-point will not generally deliver this because of the

rounding error in the approximation fl(2π) ≈ 2π . While the cancellation in x−fl(2π) is benign when
this subtraction is viewed simply as a difference between two floating-point numbers, it is catastrophic
from the perspective of computing an approximation to x−2π .

The fix for this is to subtract off an additional correction term to compensate for the error in the
approximation fl(2π) ≈ 2π . More precisely, let c be the nearest floating-point number to 2π −fl(2π).
Then, in exact arithmetic, fl(2π)+ c is an approximation to 2π with relative error on the order of the
square of the unit roundoff (see Section 4.2). We cannot form fl(2π) + c directly in floating-point
arithmetic because c is insignificant compared to fl(2π) and would be rounded off; however, if adding
or subtracting fl(2π) to or from something results in a quantity small enough that c is significant when
compared with it, we can expect to obtain a higher accuracy result if we subsequently add or subtract c
as appropriate.

In this discussion, we have considered only the case where α is close to 0 for definiteness; similar
remarks apply to the modified version of (1.2) for α close to 1. Rigorous justification for all of these
statements will be given in the analysis of Section 4. The value c can be easily computed using any
software package that supports arbitrary precision arithmetic or even by hand with aid of a table that lists
the value of π to many places. For IEEE floating-point arithmetic, c = 2.4492935982947064×10−16 in
double-precision, and c =−1.7484555×10−7 in single-precision.

The only remaining matter is to decide precisely when to use the modified formulae instead of (1.2),
i.e., to give a criterion for determining when x is “too close” to 0 or 2π . For reasons that we will justify
in Section 4, we switch to the modified formulae whenever x is within π|1− 2α|/K of the relevant
endpoint. Note that for α = 1/2, this quantity is zero, so (1.2) is used without modification for all
x ∈ [0,2π].

To summarize, the exact procedure we propose is the following:

• If α ∈ [0,1/2), use (1.2) for x ∈ [0,2π −π(1−2α)/K]. Otherwise, use

t f ,X (x) =

K−1

∑
k=1

(−1)k

sin
( x−xk

2

) fk −
1

sin
(

x−x0−2π

2

) f0

K−1

∑
k=1

(−1)k

sin
( x−xk

2

) − 1

sin
(

x−x0−2π

2

) , (3.1)

with x− x0−2π computed as
((

x−fl(2π)
)
− c
)
− x0.

• If α = 1/2, use (1.2) for all x ∈ [0,2π].

• If α ∈ (1/2,1], use (1.2) for x ∈ [π(2α −1)/K,2π]. Otherwise, use

t f ,X (x) =

K−2

∑
k=0

(−1)k

sin
( x−xk

2

) fk −
1

sin
(

x−xK−1+2π

2

) fK−1

K−2

∑
k=0

(−1)k

sin
( x−xk

2

) − 1

sin
(

x−xK−1+2π

2

) , (3.2)

with x− xK−1 +2π computed as x−
((

xK−1−fl(2π)
)
− c
)
.
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Relative error vs. distance from 0

FIG. 3: Same as Figure 1 but using the formula (3.2) (with x− x0 − 2π computed as prescribed in
Section 3) instead of (1.2) to do the evaluations. All errors are now at the level of machine precision.

This scheme has the disadvantage that an implementation must make decisions based on the location of
the evaluation point. It is therefore less computationally efficient compared with (1.2) as-is; however,
this is the price that must be paid to guarantee stability for all evaluation points x and all possible
interpolation data fk.

To verify that the scheme we have described works, we repeat our experiment from Section 2 with
α = 1 using this algorithm. All of the evaluation points x considered lie in [0,π(2α −1)/K), so we use
(3.2) for all of them. The relative error, depicted in Figure 3, is now at the level of machine precision,
even for evaluation points that are very close to 0.

4. Analysis of the proposed algorithm

We complete our investigation by putting the observed stability of the algorithm given in the previous
section on a rigorous basis with a formal proof. The notation and framework we use for our analysis
are borrowed directly from Higham (2004). To keep this paper self-contained, we repeat the relevant
definitions here.

4.1 Condition number

Our bounds will be stated in terms of the following condition number (inequalities between vectors are
understood to hold componentwise):

DEFINITION 4.1 For t f ,X (x) 6= 0, the relative condition number of t f ,X at x with respect to perturbations
in f is

κ(x,X , f ) = lim
ε→0

sup
{∣∣∣∣ t f ,X (x)− t f +∆ f ,X (x)

εt f ,X (x)

∣∣∣∣ : |∆ f |6 ε| f |
}

.

A trivial rearranging of (1.1) yields the following “Lagrange” form for t f ,X (x):

t f ,X (x) =
K−1

∑
k=0

`k(x) fk, `k(x) =
(−1)k

K

sin
(

K(x−αh)
2

)
sin
( x−xk

2

) .

The following lemma gives an explicit expression for κ(x,X , f ) and shows how it can be used to bound
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the relative difference between t f ,X (x) and t f +∆ f ,X (x) for a given perturbation ∆ f . It directly parallels
Lemma 2.2 of Higham (2004) and can be proved identically.

LEMMA 4.1 We have

κ(x,X , f ) =

K−1
∑

k=0
|`k(x) fk|

|t f ,X (x)|
> 1,

and for any vector ∆ f with |∆ f |6 ε| f |,∣∣∣∣ t f ,X (x)− t f +∆ f ,X (x)
t f ,X (x)

∣∣∣∣6 εκ(x,X , f ).

4.2 Floating-point model

We denote floating-point approximations to quantities by fl(·). The standard model of floating-point
arithmetic (Higham, 2002, Ch. 2) posits that whenever x and y are floating-point numbers and ~ is one
of the four basic arithmetic operations +, −, ×, or ÷, we have

fl(x~ y) = (x~ y)(1+δ )±1, |δ |6 u, (4.1)

where u is the unit roundoff. We use this model with one modification: we assume additionally that
whenever x is a floating-point number

fl
(
sin(x)

)
= sin(x)(1+δ )±1, |δ |6 u. (4.2)

This assumption is not guaranteed to hold by any floating-point standard; however, it is possible to
accomplish this and similarly for the other common transcendental functions with high-quality imple-
mentations (Muller et al., 2010). Moreover, the latest revision of the IEEE floating-point standard
recommends (but does not mandate) that languages supporting floating-point operations also provide
correctly rounded implementations for all such basic functions3 (IEEE, 2008). This suggests that our
additional assumption is, at the very least, reasonable. In fact, we will not require its full force: for our
purposes, it is sufficient for it to hold when x ∈ [−π,π].

The symbol 〈n〉 denotes the accumulation of n relative errors accrued during a floating-point com-
putation:

〈n〉=
n

∏
i=1

(1+δi)ρi , ρi =±1, |δi|6 u.

When necessary, we write 〈n〉k to indicate that the relative errors in the product depend on an index k.
Throughout our analysis, we will at times need to assume that nu 6 1, where n is a small positive

integer. These assumptions will hold for any floating-point system that is used in practice.

4.3 Stability analysis

We are now ready to carry out our analysis. For the remainder of this section, x is taken to be a fixed
value in [0,2π], and we assume that x, xk, and fk are all floating-point numbers.4 We ignore all issues of

3For instance, the implementation for sine contributed by IBM to glibc (v. 2.21 at the time of this writing) claims to do this.
4Of course, it is not possible that the xk are simultaneously exactly equispaced in [0,2π] and also floating-point numbers.

With approximately equispaced xk , the formulae (1.2), (3.1), and (3.2) only approximate the trigonometric interpolant instead of
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overflow and underflow. Our goal is to obtain a bound on the relative error |t f ,X (x)− t̂ f ,X (x)|/|t f ,X (x)|,
where t̂ f ,X (x) is the approximation to t f ,X (x) obtained by evaluating (1.2), (3.1), or (3.2) in floating-point
arithmetic as prescribed in Section 3. Specifically, we will prove the following theorem:

THEOREM 4.2 The relative error in evaluating t f ,X (x) in floating-point arithmetic using the algorithm
of Section 3 satisfies∣∣∣∣ t f ,X (x)− t̂ f ,X (x)

t f ,X (x)

∣∣∣∣6 (5K +7)uκ(x,X , f )+(5K +6)
(

2
π

log(K)+2
)

u+O(u2) (4.3)

for all α ∈ [0,1].

Thus, the procedure outlined in Section 3 gives a forward stable method for evaluating trigonometric
interpolants in equispaced points.

Proof. We will establish the bound for α ∈ [0,1/2]; the argument for α ∈ (1/2,1] is similar. Our
argument is identical in structure to the one given by Higham (2004) for the polynomial case.

First, we develop an expression for t̂ f ,X (x) in the case where (1.2) is used for the evaluation. By
(4.1), we have, for some δk,1 and δk,2 with |δk,1|6 u and |δk,2|6 u,

fl
(

x− xk

2

)
=

x− xk

2
(1+δk,1)(1+δk,2). (4.4)

Hence, by (4.2) and the fact that sin
(
x(1+ ε)

)
= sin(x)

(
1+ εxcot(x)+O(ε2)

)
for small ε , we have

fl
(

sin
(

x− xk

2

))
= sin

(
x− xk

2
(1+δk,1)(1+δk,2)

)
〈1〉k = sin

(
x− xk

2

)(
1+ηk +O(u2)

)
〈1〉k ,

where

ηk = (δk,1 +δk,2)
x− xk

2
cot
(

x− xk

2

)
.

Therefore, our floating-point approximation to the numerator of (1.2) is given by

fl

(
K−1

∑
k=0

(−1)k fk

sin
( x−xk

2

))=
K−1

∑
k=0

(−1)k fk

sin
( x−xk

2

) 〈2〉k 〈K−1〉k
1+ηk +O(u2)

=
K−1

∑
k=0

(−1)k fk

sin
( x−xk

2

) 〈K +1〉k
(
1−ηk +O(u2)

)
,

where we’ve picked up one rounding error from the division in each term and K − 1 rounding errors
from the K − 1 additions in the sum5 and have used the expansion 1/(1 + ε) = 1− ε + O(ε2). The
denominator of (1.2) may be handled similarly. Adding one more rounding error to account for the final
division, we arrive at

t̂ f ,X (x) =

K−1
∑

k=0

(−1)k fk
sin
(

x−xk
2

) 〈K +2〉k
(
1−ηk +O(u2)

)
K−1
∑

k=0

(−1)k

sin
(

x−xk
2

) 〈K +1〉k
(
1−ηk +O(u2)

) .
computing it exactly. This does not matter for our investigation, however, as we are only concerned with the numerical stability
of these formulae. Mascarenhas & de Camargo (2016) give an analysis of the effects of rounding errors in the interpolation points
in the polynomial case.

5The order in which the terms are summed does not matter here; see (Higham, 2002, Ch. 4).
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This expression is similar in form to the corresponding one obtained by Higham (2004) in the polyno-
mial case, the key difference being the presence of the 1−ηk +O(u2) factors, which represent the error
due to the conditioning of the sine evaluations.

Next, just as in the proof of Theorem 4.1 of Higham (2004), we have

∣∣∣∣ t f ,X (x)− t̂ f ,X (x)
t f ,X (x)

∣∣∣∣6 (K +2+2
(

max
06k6K−1

∣∣∣∣x− xk

2
cot
(

x− xk

2

)∣∣∣∣))u

K−1
∑

k=0

∣∣∣∣∣ fk
sin
(

x−xk
2

)
∣∣∣∣∣∣∣∣∣∣K−1

∑
k=0

(−1)k fk
sin
(

x−xk
2

)
∣∣∣∣∣

+
(

K +1+2
(

max
06k6K−1

∣∣∣∣x− xk

2
cot
(

x− xk

2

)∣∣∣∣))u

K−1
∑

k=0

∣∣∣∣∣ 1
sin
(

x−xk
2

)
∣∣∣∣∣∣∣∣∣∣K−1

∑
k=0

(−1)k

sin
(

x−xk
2

)
∣∣∣∣∣
+O(u2)

=
(

K +2+2
(

max
06k6K−1

∣∣∣∣x− xk

2
cot
(

x− xk

2

)∣∣∣∣))uκ(x,X , f )

+
(

K +1+2
(

max
06k6K−1

∣∣∣∣x− xk

2
cot
(

x− xk

2

)∣∣∣∣))uκ(x,X ,1)+O(u2), (4.5)

where the second step follows from Lemma 4.1. (Here, the 1 in κ(x,X ,1) refers to a vector of interpo-
lation data whose entries are all 1.)

The only potential problem with this bound is in the terms involving the cotangent function, which
can be large if |x− xk|/2 is close to π for some k, reflecting the poor conditioning of sine near ±π .
Most dramatically, if α = 0, then x0 = 0, and cot

(
(x−x0)/2

)
becomes unbounded as x gets close to 2π .

Additionally, in such cases, the error term represented by the O(u2) symbol may not be negligible, since
the implied constant contains terms with cot

(
(x− xk)/2

)
as a factor for each k.

These remarks do not apply to the algorithm of Section 3, however, because its rules prevent (1.2)
from being used in these problematic cases. Since we are assuming α ∈ [0,1/2], it will only be used if
x ∈ [0,2π −π(1−2α)/K]. The reason for this particular choice of restriction is given by Lemma A.1,
presented in the appendix, which gives a very simple bound for the cotangent terms in (4.5). Applying
this result to (4.5), for x ∈ [0,2π −π(1−2α)/K], we obtain∣∣∣∣ t f ,X (x)− t̂ f ,X (x)

t f ,X (x)

∣∣∣∣6 5Kuκ(x,X , f )+(5K−1)uκ(x,X ,1)+O(u2). (4.6)

On the other hand, if x ∈ (2π − π(1− 2α)/K,2π], we use (3.1) instead of (1.2). We handle the
argument to sine in the modified terms as follows. Write fl(2π) = 2π(1+δ2π), where |δ2π |6 u. Then,

fl
(
x−fl(2π)

)
=
(
x−2π(1+δ2π)

)
(1+δ0,1) =

(
x−2π

)(
1− 2π

x−2π
δ2π

)
(1+δ0,1),

where |δ0,1| 6 u. Next, we subtract the correction term c to adjust for the error in the approximation
fl(2π) ≈ 2π as explained in Section 3. As c is by definition the nearest floating-point number to 2π −
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fl(2π) =−2πδ2π , we have c =−2πδ2π(1+δc) with |δc|6 u. Therefore,

fl
((

x−fl(2π)
)
− c
)

=
(
fl
(
x−fl(2π)

)
− c
)
(1+δ0,2)

=
((

x−2π
)(

1− 2π

x−2π
δ2π

)
(1+δ0,1)+2πδ2π +2πδ2π δc

)
(1+δ0,2)

= (x−2π)
(

1+
2πδ2π(δc−δ0,1)

x−2π
+δ0,1

)
(1+δ0,2),

where |δ0,2|6 u. Since x is a floating point number, and since fl(2π) is the nearest floating-point number
to 2π , we have |x−2π|> |fl(2π)−2π|= 2π|δ2π |. Thus,∣∣∣∣2πδ2π(δc−δ0,1)

x−2π

∣∣∣∣6 |δc|+ |δ0,1|6 2u,

and so we may write fl
((

x−fl(2π)
)
−c
)

= (x−2π)(1+ ξ̂0,1)(1+δ0,2), where |ξ̂0,1|6 3u. Multiplying
out the error terms and making the reasonable assumption that |ξ̂0,1δ0,2|6 u, which will hold if 3u 6 1,
we can simplify this to fl

((
x−fl(2π)

)
− c
)

= (x−2π)(1+ ξ̃0,1), where |ξ̃0,1|6 5u.
These developments allow us to write, in analogy to (4.4),

fl

(((
x−fl(2π)

)
− c
)
− x0

2

)
=

(
(x−2π)(1+ ξ̃0,1)− x0

)
(1+δ0,3)

2
(1+δ0,4)

=
x− x0−2π

2
(1+ξ0,1)(1+δ0,3)(1+δ0,4), (4.7)

where ξ̃0,1 is as above, |δ0,3| and |δ0,4| are both at most u, and ξ0,1 = ξ̃0,1
(
(x−2π)/(x−x0−2π)

)
. Since

x−2π and −x0 have the same sign, |(x−2π)/(x−2π − x0)|6 1, and so |ξ0,1|6 |ξ̃0,1|6 5u. Note that
this is a consequence of our having grouped the terms as prescribed in Section 3. From here, we work
similarly to before and arrive at∣∣∣∣ t f ,X (x)− t̂ f ,X (x)

t f ,X (x)

∣∣∣∣6 (K +2+C)uκ(x,X , f )+(K +1+C)uκ(x,X ,1)+O(u2),

where

C = max
(

2
(

max
16k6K−1

∣∣∣∣x− xk

2
cot
(

x− xk

2

)∣∣∣∣) ,7
∣∣∣∣x− x0−2π

2
cot
(

x− x0−2π

2

)∣∣∣∣) .

The factor of 7 in the second argument to the outer instance of max comes from the fact that there are
three rounding error terms in (4.7) that add up to at most 7u compared with the two in (4.4) that add up
to at most 2u. To bound C, we use Lemma A.2, which is given in the appendix. Combining this with
Lemma A.1, we have

C 6 max(4K−2,7) 6 4K +5,

and so ∣∣∣∣ t f ,X (x)− t̂ f ,X (x)
t f ,X (x)

∣∣∣∣6 (5K +7)uκ(x,X , f )+(5K +6)uκ(x,X ,1)+O(u2) (4.8)
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for x ∈ (2π −π(1−2α)/K,2π]. In fact, noting that (4.8) is slightly weaker than (4.6), we see that (4.8)
actually holds for x ∈ [0,2π].

To finish, we note, again following Higham (2004), that κ(x,X ,1) is bounded above by the Lebesgue
constant for the interpolation problem, which is at most (2/π) log(K) + 2 in our setting (Cheney &
Rivlin, 1976). Combining this with (4.8) yields (4.3). This completes the proof of Theorem 4.2. �

Note carefully that this analysis depends strongly on the evaluation point x and the interpolation
points xk being in [0,2π]. In particular, for the α < 1/2 case that we described in detail, it does not
apply to evaluations at x = fl(2π) if fl(2π) > 2π .6 The reason is that, under these circumstances, x−2π

and x0 may have the same sign, and so the factor multiplying ξ̃0,1 to define ξ0,1 in (4.7) can be large if x0
is chosen carefully. In IEEE double-precision arithmetic, fl(2π) < 2π , so this is not a problem; however,
in IEEE single-precision arithmetic, fl(2π) > 2π , and it is not difficult to construct a numerical example
in which the algorithm of Section 3 is unstable for x = fl(2π).

If fl(2π) > 2π and a stable evaluation at x = fl(2π) is desired, it can be accomplished with the aid of
a second correction term. To see this, note first that since x = fl(2π), when we compute x− x0−2π as
prescribed in Section 3, the subtraction x−fl(2π) evaluates exactly to zero. Thus, we are left to evaluate

fl(−c− x0) = (2πδ2π +2πδ2π δc− x0)(1+δ1) = (x− x0−2π)
(

1+
2πδ2π δc

x− x0−2π

)
(1+δ1), (4.9)

where |δ1| 6 u and we have used the fact that x = fl(2π) = 2π(1 + δ2π). Since c is by definition the
nearest floating-point number to −2πδ2π , and since −x0 is a floating-point number, we have |x− x0 −
2π| = | − x0 − (−2πδ2π)| > |c− (−2πδ2π)| = 2π|δ2π δc|. Thus, |2πδ2π δc/(x− x0 − 2π)| could be as
large as 1, and if this is the case, we will not have computed x− x0−2π accurately.

This calculation highlights that the problem is due to the fact that |x− x0 − 2π| can be as small as
2π|δ2π δc|, which is O(u2), while we have only corrected for the error in fl(2π) ≈ 2π down to O(u).
This naturally suggests a fix of subtracting an additional term that corrects the error down to O(u2).

Indeed, let c2 be the nearest floating-point number to 2πδ2π δc. We have c2 = 2πδ2π δc(1 + δc2),
where |δc2 |6 u. In IEEE double-precision, c2 =−5.989539619436679×10−33, and in single-precision,
c2 =−6.860498×10−15. Subtracting c2 from the result of (4.9), we obtain

fl
(
(−c− x0)− c2

)
=
(

(x− x0−2π)
(

1+
2πδ2π δc

x− x0−2π

)
(1+δ1)−2πδ2π δc−2πδ2π δcδc2

)
(1+δ2)

= (x− x0−2π)
(

1+δ1 +2πδ2π δc
δ1−δc2

x− x0−2π

)
(1+δ2),

where |δ2| 6 u. Using the lower bound on |x− x0 − 2π| just derived and collecting the error terms,
we find that fl

(
(−c− x0)− c2

)
= (x− x0 − 2π)(1 + ξ ) with |ξ | 6 5u (assuming that 3u 6 1). This is

certainly accurate enough for our purposes.
Similar remarks apply in the α > 1/2 case if xK−1 is taken to be fl(2π).

5. Interpolation on other intervals

With the main result of the paper now established, in the remaining two sections, we examine what
happens to our discussions in some settings beyond the one we have considered up to this point.

6Note that fl(2π) is the only floating-point number x in [0,fl(2π)] for which one can have x > 2π , for if 2π < x < fl(2π), then
x would be a closer floating-point number to 2π than fl(2π).
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Thus far, we confined our discussion to interpolation on the interval [0,2π]. At first glance, it would
seem that much of what we have said translates directly to other intervals with little additional work,
since (1.2) holds as-is for x and xk drawn from any given interval of length 2π , a consequence of its
depending only on the values of x− xk for each k and not on the values of x and xk individually. In fact,
the issue is more subtle, as we now explain.

The instability in (1.2) that we presented in Section 2 arises when poor conditioning of the sine
function amplifies rounding errors in the computation of (x− xk)/2 into large relative errors in the
computed value of sin

(
(x− xk)/2

)
for some k. If it happens that (x− xk)/2 is computed exactly for

all k for which the corresponding evaluation of sine is ill conditioned, this cannot occur, and (1.2) will
perform the evaluation stably. We observed this behavior empirically in the numerical experiments of
Section 2 involving the α = 0 grid on [0,2π]. In terms of the analysis of Section 4, this corresponds to
having δk,1 = δk,2 = 0 in (4.4) for the relevant values of k so that the bound (4.6) for the relative error in
using (1.2) to evaluate t f ,X (x) in floating point arithmetic holds for all x ∈ [0,2π] instead of just for x in
the restricted interval given there.

In IEEE floating-point arithmetic, which uses a base-2 floating-point system, multiplication and
division by 2 are always exact, barring overflow and underflow. Thus, whether (x− xk)/2 is computed
exactly boils down to whether the subtraction x− xk is done exactly. When working on intervals other
than [0,2π], especially those away from the origin, this can happen with a far greater frequency than
one might initially expect, owing to the following theorem of Sterbenz (Higham, 2002, Ch. 2):

THEOREM 5.1 If s and t are floating-point numbers such that t/2 6 s 6 2t, then fl(s− t) = s− t in the
absence of underflow.

Note that the hypotheses of the theorem imply that s and t are both nonnegative; an analogous result
can be stated when s and t are both negative. It is easy to check that for a > 2π , the condition t/2 6 s 6 2t
is satisfied for all s, t ∈ [a,a + 2π]. Hence, all of the subtractions x− xk that occur when using (1.2) to
interpolate on such an interval will be done exactly, and it follows that (1.2) is stable! Similarly, (1.2) is
stable for interpolation on all intervals of the form [b− 2π,b], for b 6 −2π . Thus, there is no need to
modify (1.2) in these circumstances.

For other intervals, i.e., length-2π subintervals [a,b] of (−4π,4π), we can interpolate stably in the
vast majority of cases using a modified version of the algorithm of Section 3 under some additional
assumptions that are given in the discussion below. The formulae (3.1) and (3.2) are still applicable; we
just need to change how we compute the arguments to the sine function in the modified terms. If we
can show that these can be computed to high relative accuracy, then the rest of the analysis in Section 4
can be applied with only very minor modifications to conclude that the resulting algorithm is stable. As
before, there are two issues that must be handled:7 how to group the terms and how to correct for the
fact that 2π cannot be represented exactly in floating-point arithmetic.

For the former, the appropriate generalization in the case where α < 1/2 is to compute x− x0−2π

as (x− b)− (x0 − a), while for α > 1/2, we compute x− xK−1 + 2π as (x− a)− (xK−1 − b). These
arrangements have the same previously identified crucial property that the terms in the final subtraction
have opposite signs so that the only cancellation that occurs is the benign cancellation in each of the
individual subtractions x−b and x0−a.

The latter issue is more delicate, since the approximation fl(2π) ≈ 2π does not enter into the com-

7We remark that similar issues—with similar resolutions—arise in the investigations of Mascarenhas & de Camargo (2016)
into the effects of rounding errors in the interpolation points on the performance of the barycentric formulae for polynomial
interpolation.
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putation directly. Instead, what we must correct for is the deviation of b−a from 2π that we get when
a and b are floating-point numbers. Ideally, we would have b−a = fl(2π) so that we could correct the
error using the quantity c introduced previously, but this is not guaranteed. In general, the most we can
say is that b−a = fl(2π)+ γ for some γ that is hopefully not too large.

This leads us to the two key assumptions we make for the remainder of this section. First, we assume
that |b− a− 2π| 6 |x− x0 − 2π| in the case where α < 1/2; for α > 1/2, we assume |a− b + 2π| 6
|x− xK−1 +2π|. These inequalities would hold if b−a were exactly 2π , but they can fail when b and a
are floating-point numbers whose difference merely approximates 2π .

Second, we assume that γ itself is a floating-point number. At first glance, this seems rather restric-
tive, but it actually holds quite often as we now explain. Suppose for the moment that π 6 b 6 4π .
Then, by Theorem 5.1, b−fl(2π) is exactly a floating-point number. If a has been chosen well, then a
and b−fl(2π) will not be far from each other. If they are close enough to each other that the subtraction
γ =

(
b− fl(2π)

)
− a can be done exactly in floating-point arithmetic, then we are done. Looking to

Theorem 5.1 once again, this is guaranteed if a/2 6 b−fl(2π) 6 2a. Similarly, if −4π 6 a 6−π , then
a + fl(2π) is exactly a floating-point number, and if b/2 6 a + fl(2π) 6 2b, then γ = b−

(
a + fl(2π)

)
will be a floating-point number as well.

Since any length-2π subinterval [a,b] of [−4π,4π] has either −4π 6 a 6 −π or π 6 b 6 4π , and
since the conditions imposed by Theorem 5.1 are rather mild, γ will be exactly a floating-point number
in virtually every case of practical interest. In particular, this is true for interpolation on [−π,π] with
a = −fl(π), b = fl(π) (in fact, γ = 0 in that case), which is arguably the most important interval for
trigonometric interpolation aside from [0,2π]. Note that the discussion of the preceding paragraph also
gives a way to compute γ in floating-point arithmetic for a given a and b.

To convert γ into an approximation of b−a−2π , it remains to correct for the error in the approxima-
tion fl(2π)≈ 2π . For reasons similar to those given in the remarks following the proof of Theorem 4.2,
using c alone will not suffice. We must additionally correct for the rounding error in the approximation
c ≈−2πδ2π using the constant c2 defined previously. We compute, in floating-point arithmetic,

fl
(
(γ − c)− c2

)
=
((

b−a−fl(2π)− c
)
(1+δ1)− c2

)
(1+δ2)

=
((

b−a−2π +2πδ2π δc
)
(1+δ1)−2πδ2π δc−2πδ2π δcδc2

)
(1+δ2)

= (b−a−2π)
(

1+δ1 +2πδ2π δc
δ1−δc2

b−a−2π

)
(1+δ2), (5.1)

where |δ1| and |δ2| are at most u.
Our assumption that γ is a floating-point number has the consequence that we can bound |b−a−2π|

from below, for |b−a−2π|= |b−a−fl(2π)+2πδ2π |= |γ − (−2πδ2π)|. Since −γ is a floating-point
number, and since c is the closest floating-point number to 2πδ2π , the right-hand side can be no smaller
than |c− (−2πδ2π)|= 2π|δ2π δc|. It follows that∣∣∣∣2πδ2π δc

δ1−δc2

b−a−2π

∣∣∣∣6 |δ1|+ |δc2 |6 2u,

and hence, multiplying out the error terms in (5.1), we find that we may write fl
(
(γ − c)− c2

)
= (b−

a− 2π)(1 + ξγ), where |ξγ | 6 5u and where we have implicitly made the reasonable assumption that
4u 6 1. Thus, fl

(
(γ − c)− c2

)
is a high relative accuracy approximation to b−a−2π .

At last, we can show how to compute the argument to the sine function in the modified terms of
(3.1) and (3.2) to the needed accuracy. As usual, we consider the α < 1/2 case, the α > 1/2 case being
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similar. First, we compute, using the grouping of the terms prescribed earlier in this section

fl
(
(x−b)− (x0−a)

)
=
(
(x−b)(1+δ1)− (x0−a)(1+δ2)

)
(1+δ3)

=
(
x− x0− (b−a)

)(
1+δ1

x−b
(x−b)− (x0−a)

+δ2
x0−a

(x−b)− (x0−a)

)
(1+δ3),

where |δ1|, |δ2|, and |δ3| are all at most u. Since x− b and −(x0 − a) have the same sign, the factors
multiplying δ1 and δ2 in the second bracketed factor are at most 1 in absolute value, and it follows that
we have fl

(
(x− b)− (x0 − a)

)
=
(
x− x0 − (b− a)

)
(1 + ξ1), where |ξ1| 6 4u, assuming that 2u 6 1.

Writing c′ = fl
(
(γ − c)− c2

)
for brevity, we now apply the correction we just computed to obtain

fl
((

(x−b)− (x0−a)
)
− c′

)
=
(
(x− x0− (b−a))(1+ξ1)− (b−a−2π)(1+ξγ)

)
(1+δ1)

= (x− x0−2π)
(

1+ξ1
x− x0− (b−a)

x− x0−2π
+ξγ

b−a−2π

x− x0−2π

)
(1+δ4),

where |δ4| 6 u. By our assumption that |b−a−2π| 6 |x− x0 −2π|, the factors multiplying ξ1 and ξγ

in this equation are bounded in magnitude by 2 and 1, respectively. Thus, we have fl
((

(x− b)− (x0 −
a)
)
− c′

)
= (x− x0−2π)(1+ξ ) with |ξ |6 15u, assuming that 13u 6 1, as desired.

Applying similar arguments for the case where α > 1/2, we can summarize our findings in this
section as follows:

• If a > 2π or b 6−2π , we can interpolate stably using (1.2) directly.

• If [a,b] ⊂ (−4π,4π) with b−a = fl(2π)+ γ , we can interpolate stably if γ is exactly a floating-
point number and if |b−a−2π|6 |x−x0−2π|when α ∈ [0,1/2) or |a−b+2π|6 |x−xK−1 +2π|
when α ∈ (1/2,1]. These assumptions are not always valid, but they hold in many cases.

• Under the conditions of the last item, the interpolant can be computed by first calculating γ via

–
(
b−fl(2π)

)
−a if π 6 b < 4π or

– b−
(
fl(2π)+a

)
if −4π < a 6−π

and then computing the correction factor c′ = (γ − c)− c2. Then, there are three cases:

– If α ∈ [0,1/2), use (1.2) for x ∈ [a,b−π(1−2α)/K]. Otherwise, use (3.1) with x−x0−2π

computed as
(
(x−b)− (x0−a)

)
− c′.

– If α = 1/2, use (1.2) for all x ∈ [a,b].
– If α ∈ (1/2,1], use (1.2) for x ∈ [a+π(2α−1)/K,b]. Otherwise, use (3.2) with x−xK−1 +

2π computed as
(
(x−a)− (xK−1−b)

)
− c′.

6. The case of an even number of interpolation points

Our analysis in this paper has focused exclusively on the version of the second formula applicable to an
odd number K of equispaced points. We close with a few words about the case of even K.

The even-K counterpart of (1.2) is

t f ,X (x) =

K−1

∑
k=0

(−1)k

tan
( x−xk

2

) fk

K−1

∑
k=0

(−1)k

tan
( x−xk

2

) , (6.1)
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FIG. 4: Illustration of the instability in (6.1) when |x− xk| is close to π for some k. The solid
blue lines show the relative error in the evaluations for the experiment described in Section 6 with (a)
f1 = 1015 and (b) f1 = 1030. The dashed red lines depict the product of the condition number (computed
using the even-K analogue of Lemma 4.1) and the unit roundoff u = 2−52.

i.e., it is identical to (1.2) except that the sine function is replaced by the tangent (Henrici, 1979). The
instability in (1.2) emerged from the poor conditioning of the sine function near ±π . The tangent func-
tion is also poorly conditioned near ±π , so one would expect (6.1) to suffer from a similar instability.
Indeed, this is the case, and it can be corrected analogously.

This is not the end of the story, however, as the tangent function additionally suffers from poor
conditioning near ±π/2, suggesting the possibility of an instability in (6.1) when |x− xk| is close to π

for some k, an instability that (1.2) does not possess. At first glance, it seems that this is not an issue,
since if |x−xk| is close to π , then tan

(
(x−xk)/2

)
is large. If the interpolation data in the vector f are all

comparable in magnitude to one another, this means that the kth terms in the sums in (6.1) will be small
relative to the rest so that while they may have been evaluated inaccurately due to the poor conditioning,
their contribution to the final result will be negligible. If the datum fk is much larger than the others,
however, it will offset the growth in tan

(
(x−xk)/2

)
, the kth term in the numerator will not be relatively

small, and the instability will manifest itself.
We can illustrate these effects with the following numerical example. Let α = 0 and K = 6, so that

the grid points are xk = kπ/3, 0 6 k 6 5, and let the interpolation data be f0 = f2 = f3 = f4 = f5 = 1 and
f1 = 1015. We evaluate the interpolant using (6.1) at several points x near 4π/3 so that |x−x1| is close to
π . Just as in the experiments of Sections 2 and 3, we perform the evaluation once using double-precision
arithmetic and once using higher-precision arithmetic and then compute the relative error in the former,
taking the latter as “exact.” Since f1 is considerably larger than the other interpolation data, we expect
to see evidence of instability per the previous paragraph.

The results are displayed in Figure 4a, which plots the relative error as a function of the distance
of x from 4π/3. As predicted, the formula does indeed exhibit instability. The “pyramid” shape of the
error curve is due to the fact that 4π/3 is a grid point, x4. As x gets closer to 4π/3, tan

(
(x− x4)/2

)
shrinks, causing the k = 4 term in the sum in the numerator of (6.1) to become larger. At the same
time, the k = 1 term that suffers from the ill conditioning of the tangent function becomes smaller, as
explained previously; it only retains its significance because of the large magnitude of f1. For the value
of f1 that we have chosen, the k = 1 term is the dominant term in the sum until the distance from 4π/3



ON THE STABILITY OF BARYCENTRIC TRIGONOMETRIC INTERPOLATION 17 of 19

has decreased to about 10−7, after which the k = 4 term takes over. Since the evaluations of the tangent
function in the k = 4 term are all well-conditioned for x in the chosen range, it is computed to high
relative accuracy. Hence, we expect the error in the overall evaluation to improve as it takes more and
more control from the k = 1 term.

We can verify the correctness of this explanation by making the datum f1 so large that the k = 1 term
always makes a significant contribution to the sum, even when the distance between x and 4π/3 is very
small. In this case, we expect to see the error rise steadily as the distance shrinks. These expectations
are confirmed by Figure 4b, which shows the results of running the same experiment with f1 = 1030.

Regrettably, this new instability is not as easily corrected as the one described in Section 2. The
technique from Section 3 of using periodicity to change the interpolation grid is not applicable here: if
|x− xk| is close to π , then |x− (xk + 2nπ)| will be close to an odd multiple of π for any integer n, so
the evaluation of tan

(
(x− (xk + 2nπ))/2

)
associated with the adjusted point in the resulting modified

formula is still poorly conditioned. Moreover, there are more ways to excite this new instability than
there are for the previous one, since for a given interpolation grid, there are several choices of x and xk
such that |x−xk| is close to π , while there is only one such that that |x−xk| is close to 2π . A method for
stabilizing (6.1), if one exists, will likely require several modified formulae, one for each possible case,
in addition to the even-K analogues of (3.1) and (3.2).

7. Conclusion

We have shown that, unlike its polynomial counterpart, the second barycentric formula for trigonometric
interpolation is unstable for some evaluations. We have given a method for correcting this instability in
the case where the number of interpolation points is odd and have proved that the resulting algorithm
is forward stable. We have investigated the extent to which our results for interpolation on [0,2π] can
be extended to interpolation on other intervals of length 2π and have established that this is possible
in many cases. Finally, we have shown that if the number of interpolation points is even, the formula
possesses an additional instability that is more challenging to correct.
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Appendix – Lemmas

LEMMA A.1 If α ∈ [0,1/2], then for 1 6 k 6 K−1 and all x ∈ [0,2π],∣∣∣∣x− xk

2
cot
(

x− xk

2

)∣∣∣∣6 2K−1.

If k = 0, then the same holds for x ∈ [0,2π −π(1−2α)/K].

Proof. We use the following inequality, valid for t ∈ [−π,π], whose proof we omit:

|cot(t)|6 max
(

1
|t|

,
1

π −|t|

)
. (A.1)

Thus, we have ∣∣∣∣x− xk

2
cot
(

x− xk

2

)∣∣∣∣6 max
(

1,
|x− xk|

2π −|x− xk|

)
,

for 0 6 k 6 K−1, since (x−xk)/2 ∈ [−π,π]. The second argument to max is maximized when |x−xk|
is as close to 2π as possible. If 1 6 k 6 K − 1, then since α ∈ [0,1/2], this happens when x = 0 and
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k = K−1, giving

|x− xk|
2π −|x− xk|

6
(K−1+α) 2π

K

2π − (K−1+α) 2π

K

=
K

1−α
−1 6 2K−1.

On the other hand, if k = 0 and x is restricted to [0,2π −π(1− 2α)/K], then |x− x0| is closest to 2π

when x is at the right endpoint of that interval, so

|x− x0|
2π −|x− x0|

6
2π −π

1−2α

K −α
2π

K

2π −
(
2π −π

1−2α

K −α
2π

K

) = 2K−1

as well. As 2K−1 > 1, this completes the proof. �

LEMMA A.2 If α ∈ [0,1/2], then for x ∈ (2π −π(1−2α)/K,2π],∣∣∣∣x− x0−2π

2
cot
(

x− x0−2π

2

)∣∣∣∣6 1.

Proof. Since |x− x0| 6 2π , we have |x− x0 − 2π| = 2π − (x− x0), and for x in the given interval, we
have x > x0, so |x− x0|= x− x0. Thus, by (A.1),∣∣∣∣x− x0−2π

2
cot
(

x− x0−2π

2

)∣∣∣∣= ∣∣∣∣x− x0−2π

2
cot
(

x− x0

2

)∣∣∣∣
6 max

(
|x− x0−2π|
|x− x0|

,
|x− x0−2π|
2π −|x− x0|

)
= max

(
2π − (x− x0)

x− x0
,1
)

.

The first argument to max in the final line is maximized when x− x0 is as small as possible. Given the
restrictions on x, this happens when x = 2π −π(1−2α)/K, so we have

2π − (x− x0)
x− x0

6
2π −2π +π

1−2α

K +α
2π

K

2π −π
1−2α

K −α
2π

K

=
1

2K−1
.

The result follows, since 1/(2K−1) 6 1. �


